Hindered rolling and friction anisotropy in supported carbon nanotubes.

نویسندگان

  • Marcel Lucas
  • Xiaohua Zhang
  • Ismael Palaci
  • Christian Klinke
  • Erio Tosatti
  • Elisa Riedo
چکیده

Carbon nanotubes (CNTs) are well known for their exceptional thermal, mechanical and electrical properties. For many CNT applications it is of the foremost importance to know their frictional properties. However, very little is known about the frictional forces between an individual nanotube and a substrate or tip. Here, we present a combined theoretical and experimental study of the frictional forces encountered by a nanosize tip sliding on top of a supported multiwall CNT along a direction parallel or transverse to the CNT axis. Surprisingly, we find a higher friction coefficient in the transverse direction compared with the parallel direction. This behaviour is explained by a simulation showing that transverse friction elicits a soft 'hindered rolling' of the tube and a frictional dissipation that is absent, or partially absent for chiral CNTs, when the tip slides parallel to the CNT axis. Our findings can help in developing better strategies for large-scale CNT assembling and sorting on a surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Simultaneous Incorporation of PTFE Nanoparticles and Carbon Nanotubes on the Tribological Behavior of Ni-P Coating

In some engineering fields, wear resistance and a low friction coefficient are required at the sametime. In this research, PTFE nanoparticles and carbon nanotubes were co-deposited within Ni-Pmatrix to obtain an Ni-P-PTFE-CNT hybrid coating for wear resistance and a low friction coefficient.The tribological properties of the deposits were evaluated by pin on disc tribometer. T...

متن کامل

Friction on a single MoS2 nanotube

Friction was measured on a single molybdenum disulfide (MoS2) nanotube and on a single MoS2 nano-onion for the first time. We used atomic force microscopy (AFM) operating in ultra-high vacuum at room temperature. The average coefficient of friction between the AFM tip and MoS2 nanotubes was found considerably below the corresponding values obtained from an air-cleaved MoS2 single crystal or gra...

متن کامل

Adhesion and size dependent friction anisotropy in boron nitride nanotubes.

The frictional properties of individual multiwalled boron nitride nanotubes (BN-NTs) synthesized by chemical vapour deposition (CVD) and deposited on a silicon substrate are investigated using an atomic force microscope tip sliding along (longitudinal sliding) and across (transverse sliding) the tube's principal axis. Because of the tube's transverse deformations during the tip sliding, a large...

متن کامل

Multi-walled carbon nanotubes supported palladium nanoparticles: Synthesis, characterization and catalytic activity towards methanol electro oxidation in alkaline media

Palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNTs) have been synthesized using a modified polyol reduction method and its performance in methanol oxidation reactions has evaluated. The morphology of palladium on MWCNTs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic performance of synthesized catalyst ...

متن کامل

Carbon Nanotubes Synthesis by Chemical Vapor Deposition of Methane over Zn – Fe Mixed Catalysts Supported on Alumina

Carbon nanotubes were synthesized over a series of Zn-containing Fe/alumina catalysts by chemical vapor deposition method at two reaction temperatures of 850 and 950 °C using methane as a carbon source. Catalysts were synthesized by keeping Fe concentration constant and varying Zn concentration to study the effects of Zn. The catalysts were characterized using X – ray powder diffraction and N2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nature materials

دوره 8 11  شماره 

صفحات  -

تاریخ انتشار 2009